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Predicting new solids and their properties

By MArRVIN L. COHEN

Department of Physics, University of California, Materials Sciences Diviston,
Lawrence Berkeley Laboratory, Berkeley, California 94720, U.S.A.
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It is now possible to predict properties of materials using quantum theory and
minimal information about the constituent atoms of a solid. Accurate calculations
explaining and, in some cases, predicting electronic, structural, vibrational, and even
superconducting properties of solids have been performed. Here we provide an
overview of this area with emphasis on the predictive capacity of the approach. A few
of the applications which will be highlighted include the analysis of high-pressure
structures of solid, compounds having very low compressibilities, and metallic
hydrogen.

THE ROYAL
SOCIETY

1. Introduction

The theory of bonding and structure of solids has evolved considerably in the past
30 years. The quantum theory developed in the 1920s provided the fundamental tool
for exploring solids, but the invention of appropriate models and the mechanics for
solving the resulting differential equations were required before applications to real
systems could be made. At first, considerable physical insight was achieved with
simple models. Later, the advent of high-speed computers allowed the use of more
appropriate complex models. Today computer modelling of materials is a successful
industry and interesting advances are being made at a rapid rate (Cohen 1986). An
early worry that computer modelling would lead to mindless exercises or crank-
turning without physical understanding is rarely stated nowadays. Mindless
calculations can be done without a computer and most researchers feel that the use
of modern computational equipment allows boarder exploration of physical
phenomena by reducing some of the constraints arising from mathematical and
physical complexity. As a result we are in the fortunate situation for many subareas
of condensed matter physics where theorists can contribute more effectively in the
three conventional modes expected of them. Firstly, there is the task of explaining
specific observed phenomena. Secondly, the development of concepts, arguments, or
robust theories to bring together the results of a variety of experiments with unifying
principles. Finally, there is prediction. The use of theory to predict new results is
particularly challenging in the field of condensed matter physics where few
predictions are ignored by able experimentalists. In practice it is not unusual to find
theorists working in two or three modes at once.

The evolution of the theory of bonding and structural properties of solids is a
particularly good example of the metamorphosis which has taken place more
generally in condensed matter theory. It is also an area where successful predictions
are being made. After a brief description of some of the approaches and models used,
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a few applications will be described as examples to illustrate the successes of the
models and concepts and to indicate some future directions of this field.

2. Models

Because of the successes in the application of quantum theory to understand the
properties of atomic and molecular systems, it was natural to view clusters of atoms
and solids as weakly perturbed collections of atoms or molecules. This approach has
been used successfully by quantum chemists and physicists for systems in which the
bonding between the atoms or molecules does not significantly perturb their
electronic energy levels. For most metals and semiconductors, the opposite is true.
In fact, it is usually a better starting point is to consider free electrons weakly
perturbed by the ionic potential. The unperturbed free electron model was used by
Sommerfeld and others to explain many properties of metals (Kittel 1986). When
this model is used, the Fermi statistics and spatial constraints on the electron gas
manifest themselves in most of the physical properties particularly at low
temperatures. To go beyond the simplest free-electron model which considers only
the kinetic energy contribution, it is convenient to use a jellium model where the
electrons move freely in a structureless positive jelly arising from a smeared out
distribution representing the ions. The total electronic energy E, (in rydbergs) of the
system is composed of kinetic, exchange, and correlation energies, and all are
functions of the electron gas parameter 7,

E, =2.2099/r2—0.9163/r,—0.094+0.0622 In r,. (1)

The above expression is accurate as r, < 0 and for large solids where surface effects
can be neglected. Even though 2 < r, < 5 for most metals, this is still a good starting
point for bulk solids and with some refinements surface effects can be explored for
finite samples.

A recent success of this model is its application to metal clusters. Jellium spheres
and ellipsoids have been used to stimulate clusters of alkali atoms (de Heer et al.
1987). The confinement of the electrons in the jellium spheres and ellipsoids leads to
electronic energy levels and shell structure which in turn are responsible for the
stability of clusters with specific or ‘magic’ numbers of atoms. The self-consistent
potential for the electrons resembles that of the intermediate well in figure 1 which
gives magic numbers at 2, 8, 18, 20, 43, 40, .... This electronic shell structure is basic
to the theory and the resulting calculations of the abundance spectra, ionization
potentials and many other electronic properties of metal clusters are generally in
agreement with the measured results. Because the jellium model is used, the
structural arrangement of the atoms does not play a role in this approach.
Calculations (Cleland & Cohen 1985) based on pseudopotentials for specific structural
arrangements of atoms yield results which are consistent with the jellium spectra.
Hence the crystal field effects do not significantly alter the shell structure.

When large clusters are formed (Gohlich ef al. 1990) the transition to the bulk can
be studied. For free-electron-like metals, small bonding features in the electron
density appear when the cluster size is sufficiently large. A nearly-free-electron model
with the electron—ion potential treated in perturbation theory can be used to describe
this behaviour. A similar approach can be applied to semiconductors and even some
insulators. The electron—ion potential can be approximated using a pseudopotential
approach (Heine 1970 ; Cohen & Heine 1970) where the core electrons are assumed to
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Figure 1. A comparison of the energy level spectrum for a three-dimensional harmonic oscillator
(left), a square-well potential (right), and a potential intermediate between these two. The numbers
inside the rectangles refer to energy level labels while those in parenthesis refer to degeneracies. The
numbers outside the rectangles give the cumulative number of states. The intermediate case is
representative of that found for simple metal clusters.

be unchanged in going from the nearly isolated atoms state appropriate for a gas of
atoms to the strongly interacting atoms state of a solid. Now the total energy of the
system includes the electronic energy, the energy of the ionic cores and the
electron—core interaction energy. For rigid cores, the total energy is

Etotal = Eke+Ee~c+Ee~e+Ec—c’ (2)

where B, is the electron kinetic energy; E,.,, E, ., and E,_, are the electron—core,
electron—electron and core—core contributions to the energy.

The pseudopotentials needed to represent the electron—core 1nteract10ns can be
extracted from experimental data (Cohen & Chelikowsky 1988) or generated
(Starkloff & Joannopoulos 1977; Zunger & Cohen 1979; Hamann et al. 1979 ; Kerker
1980; Louie et al. 1982) from atomic wavefunctions. The former approach is the
empirical pseudopotential method (Epm) while the latter is often called the ‘ab initio
or first principles’ pseudopotential approach. The EPM generally starts with optical
data and yields an interpretation of the data together with pictorial representation
of the electronic charge density, the band structure, dielectric functions, densities of
states, etc. Calculations in the 1960s and 1970s using the EPM gave rise to predictions
of band structures which were later shown to be correct using angular resolved
photoemission. These studies also introduced electron density plots and successfully
predicted the bonding distribution of the electrons.

Since the EpM uses potentials derived for the bulk solid it is not appropriate for
calculations which involve the rearrangement of charge such as occurs at surfaces,
near defects, or as a result of solid—solid structural phase transitions. For these cases
the core pseudopotentials are used together with a model for the electron—electron
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Figure 2. Calculated total energy as a function of volume for Si in the cubic diamond, B-Sn, simple

hexagonal, hexagonal-close packed, and face-centred-cubic structures. The volume is normalized
to the calculated volume for cubic diamond (V).

interaction energy. A phenomenological approach to estimate the electron—electron
potential can be used based on Slater’s (1951)X—o model, or a more first principles
scheme such as the local density approximation (Lpa) (Kohn & Sham 1965) can be
applied. The latter scheme is appropriate for calculating ground-state energies; it is
particularly useful for determining structural and vibrational properties of solids.
These properties can be computed (Cohen 1982) by considering the total energies of
model systems for different structural arrangements. An example for Si is given in
figure 2. This approach has had wide application for determining crystal structures
at high pressures and mechanical properties such as compressibility. For vibrational
properties, the atoms are moved to simulate a phonon distortion and then total
energies or forces are computed to give phonon frequencies and related properties
such as electron—phonon interactions.

Hence the use of pseudopotentials and the Lpa allows broad studies of ground
state properties of solids. Excited state properties such as those important for
explaining optical processes require more complex schemes. A quasi-particle
approach (Hybertsen & Louie 1986) for dealing with excited states relies on the
calculation of the electron self-energy and local field effects. This method has been
applied to several systems with success. Semiconductor and insulator band gaps
which are underestimated using the Lpa are found to be in good agreement with
experiment when the quasi-particle spectrum is calculated using the above scheme.
Furthermore, improvements for ground-state properties are found when electronic
correlation effects are computed using quantum Monte-Carlo methods (Fahy et al.
1988).

Since the total energy approach usually relies on the comparison of energies for
competing candidate structures or structural configurations (as shown in figure 2), it
is limited by the choice of the candidates examined. Educated guesses and
experimental data can be used to narrow the number of choices. If forces on the
atoms in a specific structure are evaluated it is sometimes possible to determine the
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directions in which to move the atoms to obtain a minimum energy structure. This
is particularly useful for surface structures where the number of possible distortions
are more limited. A more promising approach (Car & Parrinello 1985) is to use Monte-
Carlo sampling techniques for atoms moving randomly. Energy minimization
procedures based on molecular dynamics schemes are developing at a rapid pace and
it should be possible to explore a wide range of parameter space in the future.

3. Applications

As discussed previously, the EpmM has a long list of applications (Cohen &
Chelikowsky 1988) to electronic structure and optical properties. Its accuracy is
rivalled only by the first-principles quasi-particle calculations (Hybertsen & Louie
1986). Since the EPM is much simpler it has had broader applications, but it requires
experimental input. For ground-state properties, the total energy pseudopoten-
tial-LpA approach (Cohen 1982) has been applied most extensively. One impressive
result is the successful prediction of hexagonal phases of Si, their structural
properties, and the existence of superconductivity in these covalent metals systems
(Chang et al. 1985). Other high-pressure phases have been predicted and their
properties explained. It is gratifying that this first-principles approach which uses
only the atomic number and atomic mass as input is capable of giving ground-state
structural properties such as lattice constants, bulk moduli, the Poisson ratio, etc.,
with high precision. In addition vibration properties such as phonon spectra,
Gruneisen constants, and the characteristic properties of solid-state structural
transitions such as transition pressures and transition volumes are computed
accurately.

Below two recent applications are discussed in some detail. These are the search
for low compressibility or very hard solids and the properties of solid hydrogen at
high pressures.

(@) Low compressibility solids

At present the largest bulk modulus and hardest known substance is diamond.
Although hardness can be influenced by macroscopic defects, for ideal crystals, the
bulk modulus is the best indicator of hardness. Since the bulk modulus depends on
the microscopic bonding of the solid, it can be calculated from first principles. One
direct approach for calculating the bulk modulus is by using the total pseudopotential
method to compute the dependence of the energy on volume. Using a Murnahan
(1944) or Birch (1952) equation of state to fit the calculated curves, the bulk modulus
and its pressure derivative can be obtained. Although this approach works well, it
requires considerable computer time. A simpler but empirical scaling approach is
described below. This method allows the investigation of material trends and
provides simple formulae for estimating bulk moduli.

The scaling approach (Cohen 1985) is based on the following observations. For a
free electron system the bulk modulus

B =k, (3)

where 7 is the electron concentration and Ej is the Fermi energy. Equation (3) can
be interpreted as a scaling relation for B in which the bulk modulus scales like the
bonding energy divided by the bond volume. The extension to covalent semi-
conductors is based on the spectral model developed by Phillips and Van Vechten
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(Phillips 1984). In this model the average optical gap K, is assumed to have a
homopolar contribution £, and an ionic contribution ¢, where

B2 =B+ (4)

The values of E,, K\, and C can be extracted from experiment and their dependence
on bond length can be determined (Phillips 1984).

In a series such as the Ge, GaAs, ZnSe row of the periodic table, £, and the lattice
constant remain unchanged It is the ionic contribution €' which changes the average
gap which appears in the optical spectrum. The covalent nature of the bond
determines the bond length and is the major factor in determining the size of the bulk
modulus. If the bond is taken to be cylindrical with a radius of order the Bohr radius
and a length d, then the scaling of B discussed in relation to equation (3) suggests
that

B=456EK,d7", (5)
where I, (in electronvolts) is considered to be the bond energy and B is given in GPa
when d is in dngstromst. Since E, scales as d7*?, a relation which depends only on
d can be derived

B=1761d735. (6)

In the above discussion the ionic factor is ignored. A simple extension to include
ionicity can be made by introducing a parameter A = 0, 1, 2 for group IV, I1I-V and
II-VI materials. The resulting equation

= 1N, (1971 —220 A)d " (7)

gives agreement within a few percent of the measured values of the bulk modulus of
valence 8 compounds where N, = 4. A generalization to non-octet compounds which
do not have complete tetrahedral bonding can be made if one considers the density
of the bonds in addition to the strength of the bonds. Defining N, as the average
coordination number in the crystal, then the factor iV, multiplies the result in
equation (7).

As is evident from (7), the bulk modulus increases as d and A decrease. Although
diamond sets the limit at present there is no a priori reason to expect that the value
B = 443 GPa for diamond is an upper limit. In particular it was suggested (Cohen
1985) that compounds based on carbon and nitrogen might exhibit values of B
comparable with that of diamond. The C-N bond length is short and this bond is not
very ionic. The empirical scaling approach does not predict d, however, if atomic
radii are used to estimate d, the expected values of B are very large, Unfortunately,
complete tetrahedral coordination is not expected since a zincblende structure with
an occupied antibonding band does not appear favourable.

To test the viability of having a C-N compound with a very high B, the first-
principles total energy approach was used (Liu & Cohen 1989). This method requires
a candidate crystal structure. The structure chosen is the B-Si,N, structure (figure
3) which is known to exist. Assuming this structure, the ground-state properties of
B-C,N, are computed using the pseudopotential total-energy approach within a
localized-orbital formalism (Chelikowsky & Louie 1984). The hexagonal unit cell
chosen contains two formula units and the structure can be viewed as a C—N network
with sp? hybrids on the C atoms and sp? hybrids on the N atoms. This three-
dimensional network is rigid and is a good prototype for achieving a low compressible
form of C-N even though the bonding is not completely sp?.

+1A=10"m
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Figure 3. Structure of B-C,N, in the a-b plane. The c-axis is normal to the page. Half of the atoms
illustrated are located in the z = —ic plane and the other half are in the z =}c plane. The
parallelogram indicates the unit cell.

T T T
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Figure 4. Comparison of the normalized valence charge density along the bond for diamond, B-C;N,
and BN. The normalization factor for the charge density, p,, is the number of valence electrons per
cell.

The calculated total energy against volume for B-C;N, yields a C-N bond length
of 1.47A which is intermediate between the sum of the C tetrahedral and N sp? radii
and the sum of C and N tetrahedral radii. At the equilibrium volume, the cohesive
energy is 81 eV per cell or an average of 5.8 eV per atom which suggests that this
structure has a reasonable chance of being metastable. The bulk modulus is
calculated to be 427+ 15 GPa which is comparable to the value of 443 GPa for
diamond. Using the calculated mass density and bulk modulus, the average bulk
velocity of sound is estimated to be 1.1 x 10% cm s™'. The electronic charge density
along the C-N bond is similar to that of a C-C bond in diamond except for some
excess charge on the N site. A comparison with diamond and BN is given in figure 4.

The prototype B-C,N, calculation demonstrates that solids based on C and N can
be metastable and if formed should have very large bulk moduli. In addition, the
good agreement between the estimates of the bulk modulus from equation (7) and
from the total energy calculation adds support for the use of the scaling formula to
investigate trends. It is hoped that experiments using high temperatures, high
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pressures, molecular beam epitaxy or plasma deposition will lead to the fabrication of
B-C,;N, or similar phases. Although detailed calculations were not done for a-C,N,
(C-N in the a-Si;N,) structure, this structure should also be a favourable candidate.
Amorphous phases of C;N, are also of considerable interest. In addition to their low
compressibility, the wide band gaps and high thermal conductivities expected for
C-N compound make these materials interesting from a technological as well as a
scientific point of view.

(b) Metallic hydrogen

Although solid hydrogen is an insulator at low temperatures and pressures, there
is great interest in exploring higher-pressure solid phases which are likely to be
metallic. Wigner & Huntington (1935) suggested that at high pressures the H,
molecular bond would be broken and a monatomic metallic system would result.
Another possibility for a metallization is an insulator-metal transition caused by
band overlap. The resulting molecular metal would still have strong short H, bonds
with longer bonds linking the dimers. Theoretical estimates of the pressure for the
transition to an atomic metal are in the range of 3-5 mbart (Min et al. 1986 ; Ceperly
& Alder 1987; Barbee et al. 1989a). Estimates of the transition pressure to a
molecular metal phase are at much lower values in the range of 2 mbar (Min et al.
1986 ; Barbee et al. 1989a; Ramaker et al. 1975; Friedli & Ashcroft 1977). These
calculations are not definitive because the structural phases of the high-pressure
insulator and metallic phases are not known.

Recently theoretical activity in this area has intensified because of the
interpretation of some experimental data as evidence of metallization (Mao &
Hemley 1989; Eggert et al. 1990). Several experimental studies in the range of
150 GPA suggest there is a transition to a new phase, hydrogen-A (H-A). The
measurements indicate that below the transition the structure is hep and continuity
of the Raman active phonon mode suggests that the H-A phase is also hep, but there
is a discontinuous change in the frequency of the vibron mode near the transition.
Some optical data (Mao et al. 1990) suggest free carriers and Drude behaviour.

To investigate the possibility of band overlap around 150 GPa, an Lpa calculation
was modified using an X-—o potential (Garcia et al. 1990). The band structure
calculation is done for an oriented arrangement of the molecular axes and for a
disordered phase modelled by a structure factor which produces spherically
symmetric charge distributions. Using experimental input for structural properties
and the zero pressure band gap, the density dependence of the minimum indirect gap
is determined for the oriented and spherically symmetric phases. As shown in figure
5 band overlap occurs at a much higher density for the latter phase. When the
experimental equation of state is used, the calculated critical densities lead to
estimates of 180 +20 GPa and 400+ 40 GPa for the transition pressures giving band
overlap for the oriented and spherically symmetric phases, respectively.

Although the LpA calculations significantly underestimate the transition pressures
as expected, the ordering found in the X-a calculation is the same. Previous
comparisons between Lpa, X-o, and quasi-particle calculations indicate that Lpa
estimates are low while X—o estimates are a bit high compared with quasi-particle
calculations for the density corresponding to a zero gap transition. Recently
(Chacham & Louie 1991) have completed a first-principles quasi-particle study of the
oriented phase and estimate that overlap occurs at 150 GPa.

1 1 bar = 10° Pa.
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Figure 5. Indirect band gap against density for molecular-hexagonal-close-packed hydrogen
assuming oriented molecules (triangles) and spherically symmetric molecules (solid circles). The
calculation was done using the Slater X-a exchange potential.

The transition to the monatomic metallic phase can be studied by examining a
variety of structural candidates and comparing their enthalpies as a function of
pressure. It was shown (Barbee et al. 1989a) that the primitive hexagonal (pH) phase
is favoured relative to several other common structures. However, when the phonon
spectra was calculated (Barbee et al. 1989b) imaginary harmonic phonon frequencies
were found indicating that a transition to another structure is favoured. By tripling
the unit cell along the hexagonal ¢ axis a lowering of the energy was found. Although
this distorted hexagonal structure has a low energy, some phonon modes appear to
be unstable signalling yet another transition. An interesting low-energy structure is
the 9R structure found in Li at low temperatures; calculations based on this
structure are in progress.

By calculating the phonon spectra for various low-energy structures and
electron—phonon matrix elements, estimates of the electron—phonon parameter A x 1
are made. Although this is a moderately large value of A, the presence of high-energy
phonons arising from the low hydrogen mass leads to estimates of superconducting
transition temperatures 7', in the range of 100-200 K. The value of 7', depends on
crystal structure and the resulting electronic properties. Because of similarly
expected high phonon frequencies in the molecular metal, if the electron—phonon
matrix elements are comparable with those found for the monatomic metal, then 7',
should also be large for this system.

4. Conclusions

The emphasis here is on the robustness of the pseudopotential total energy
approach. Tts evolution from the nearly-free-electron gas model and the development
of refinements to the model have provided a useful tool and significant physical insight
into the behaviour of solids and clusters. There have been dozens of applications;
only a few are highlighted here. Possible future paths including taking advantage of
the developments in calculating excited states, correlation energies, and molecular
dynamics schemes. Once these approaches are refined and simplified, it should be
possible to use one computational approach to compute ground-state and excited-
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state properties for previously observed or new hypothetical systems obtained by
Monte-Carlo type searches.

If the above goals are achieved it is likely that they will lead to even more
ambitious undertakings. However, regardless of future advances, it is encouraging to
note that even now successful predictions are being made of new materials and new
properties. And as described earlier, when the methods are pushed to their present
limits, there are the suggestions of materials with hardness comparable with
diamond and a superconductor with a transition temperature above any found thus
far.

This work was supported by NSF Grant no. DMR88-18404 and by the Director, Office of Energy
Research, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of
Energy under Contract no. DE-ACO3-76SF00098.
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Discussion

Z.Reur (City University, London, U.K.). The discriminating ability of the
pseudo-potential should be quantified ; i.e. what are changes in the pseudo-potential
when going from lighter to heavier elements, up and down in the Mendeleev periodic
system of elements ? This is related to the effectiveness of the predictive methods.

M. L. ConeN. There are some standard variations which are quite interesting ; these
are well described by the pseudopotential approach. As an example, let me choose
column IV of the periodic table. For carbon, there are no p states in the core and as
a consequence no repulsive p core pseudopotential. The valance p electrons lie close
to their atomic spatial positions in C whereas for Si they are pushed out toward the
centre of the Si—Si bond. The absence of d core states for Si has similar effects on the
d valence electrons and the metallic component of the bonding which increases as one
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moves to Sn and Pb. Upon reaching the Pb row, relativistic effects become more
important and the s and p states move apart in energy making it more difficult to
construct sp® orbitals. The pseudopotential calculations of material properties
illustrate these trends. For example the pressure-induced structural changes of solids
are influenced by the core properties discussed above. These are evident in
pseudopotential calculations of the transition pressures for solid-solid phase
transformations.

L. J. Suam (University of California, San Diego, U.S.A.). For calculation of the
superconducting transition temperature in hydrogen, what does Professor Cohen use
for electron repulsion ? Hydrogen appears to be exotic compared with the materials
McMillan considered for p*.

M. L. Couen. Our level of ignorance regarding the electron—electron repulsion
parameter for hydrogen is the same as for other metals. We use the standard
procedure of scaling @ with r, and then convert to a p* model. In the end the value
for atomic metallic hydrogen is not unusual. In this regard, hydrogen is not terribly
exotic.

P. B. ALLexn (SUNY, Stony Brook, U.S.4.). Bcc—Li would probably be super-
conducting, but at low 7' lithium becomes 9R which seems to kill super-
conductivity. Would this also happen in hydrogen ? Does Professor Cohen understand
why this happens in Li?

M. L. Conen. We didn’t calculate the electron—phonon coupling constants and
superconducting transition temperature for Bcc hydrogen because this is an unstable
structure, however, I wouldn’t be surprised if A and 7', were larger for Bcc than for
9R hydrogen. We are examining Li now.

N. W. Asucrort (Cornell University, U.S.A.). There are some quite simple systems
(aluminium is an example) that possess moderately high bulk moduli, but otherwise
would be characterized as ‘weak’, i.e. the shear strengths are low. It seems that a real
test of ‘superhardness’ would require both stability analysis of a proposed structure
(against, for instance, shear distortion) and if stable a determination of the shear
modulus on shear strength. Given this, can Professor Cohen report on the shear
strength of the carbon-nitride system, and of the other systems that are being
referred to as superhard ?

M. L. Congn. The microscopic property which is the best indicator of hardness is the
bulk modulus. However, macroscopic properties such as defects and dislocations
effect the hardness of real materials, and as Professor Ashcroft points out the shear
strength of a material can be important in this regard. For the covalent materials I
discussed this is less of a problem, and for BN and B-C,N, our calculations suggest
fairly isotropic properties.

V. HEINE (Cambridge, U.K.). (a) As regards sensitive quantities like band offsets,
there have been a few unsatisfactory calculated results when some atoms like Zn and
Cd were involved. Work this year by Qteish and Needs in Cambridge has put into the
calculations the so-called nonlinear core corrections to the LpA treatment of
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exchange and correlation. When this is done, much better agreement with experiment
is obtained, thus adding to the success story that Professor Cohen has outlined. Of
course they are now going on to more complicated situations that are not clear from
experiment.

(b) In answer to the question that was asked about a pseudopotential for
hydrogen : Richard Needs in published calculations with Richard Martin found that
the use of a pure Coulomb potential for hydrogen gave better convergent results for
energy differences between structures than the use of a hydrogen pseudopotential.

(¢) Jiirgen Hafner and I obtained some interesting indications about the structure
of metallic hydrogen using perturbation theory which we never had time to follow
up. Now I know perturbation theory is rather ignored in these days of total energy
calculations. Moreover the pairwise interactions from perturbation theory expressed
in real space has been under a cloud because calculations by different workers in the
1960s and early 1970s gave significantly different results. The latter point has been
largely resolved, particularly by Hafner (Hafner & Heine 1986). It is necessary to use
a good formula for the exchange and correlation contribution to the dielectric
function which satisfies the compressibility sum role. This controls sensitively the
radius of the hard core repulsive interaction and hence the shape of the pair potential
in the crucial region where the screened core repulsion goes over into the Friedel
oscillations with their phase shift involving the pseudopotential. When that is done
correctly, one gets pair potentials which yield a great deal of insight into the
structures of the elements, even the covalently bonded structures (Hafner & Heine
1983). Anyway, when one calculates such a pair potential for hydrogen in the
metallic range of r, = 1.2-1.7 one finds bumps relative to the close packed distance
similar to those in Ga, In, Hg which give strange structures there. This is fully in
accordance with Professor Cohen’s experience that simple structures are unstable.
But I found it difficult to come to any clear conclusion about what the coordination
number should be and I wonder whether Professor Cohen’s search for the correct
ground-state structure is at an end.

M. L. Conen. I agree with Professor Heine’s comments. For (a), we have had success
in calculating the quasi-particle band offset at the (001) interface for GaAs—AlAs
heterojunctions (Zhang et al. 1990). For many problems it is necessary to use the
procedures exchange and correlation interactions. Professor Heine’s examples
involving Zn and Cd are good ones. Even structural properties are affected by these
nonlinear core effects. (b) I agree that for most applications it is best to use the full
Coulomb potential. (c) Kogan and others, in the U.S.S.R. also claim success when
using perturbation theory. I am glad to hear that Professor Heine’s results for the
stability of the simple structures are similar to ours. I do not know whether we have
found the ground-state structure. At this point the 9R structure appears to be stable,
and it has a low energy. Perhaps a lower-energy structure will turn up in the future.
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